Evaluating ideal observers for large target identification tasks
under additive white noise
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Bayesian Ideal Observers Basis Simulation

performs a given task at the optimal level possible, given the available information R = [lek i| Vector of normalized-template responses for a single trial

and any specified constraints (Geisler, 2011).
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- Have provided important insights into visual processing
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- Provide principled benchmark predictions
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However, evaluating ideal observers for large, complex tasks is challenging. vs Alternatives
We aim to scale up the set of tasks for which ideal observers can be evaluated. 1. Monte Carlo Simulations
+ Avoids computing dot products between images and templates
Ta rg et I d e N tiﬁ CatiO N - Requires convolving templates to compute the covariance matrix

- Requires recomputing the covariance for each condition to sample even a single trial

For arbitrarily large and complex target identification tasks: 2. Analytical Approximations

» Describe the task as a hierarchy of exhaustive, mutually exclusive events. - Work only in limited cases; designed to approximate parts of the distribution

- Derive general equations for ideal observers.
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Conclusion 2

Our toolbox is particularly well suited to evaluating multiple tasks within a given dataset.

Conclusion 1

We leveraqge all advantages of evaluating ideal observers for large tasks. . . .
J J J J - Provides a deeper understanding of task constraints.

Potential applications: (i) handwritten diqits;

. . . . . . . L - Generates further testable predictions about relationships between tasks.
(ii) optical distortions (e.g., blur, aberrations) that induce internal variability.
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Potential Extensions: additive filtered-noise backgrounds.




